
ISAW Developer’s Manual

February 6, 2002

Table of Contents

1 Basics 3
1.1 Conventions in this Manual . 3
1.2 Downloading and Installing . 3
1.3 Running ISAW . 4
1.4 Compiling ISAW . 5
1.5 Developing with CVS . 5

2 Building DataSets 7
2.1 Introduction . 7
2.2 Steps to Create a DataSet . 7

2.2.1 Construct the Empty DataSet 7
2.2.2 Add Attributes to the DataSet 8
2.2.3 Construct a Data object . 9
2.2.4 Add attributes to Data object 10
2.2.5 Add the Data object to the DataSet 10

2.3 Attributes Needed in a DataSet and Data Object 11
2.4 A Data Retriever . 12
2.5 An Example . 13

3 Operators 17
3.1 Introduction . 17

3.1.1 A Simple Example . 17
3.2 Operator Structure . 19
3.3 Running the Operator . 20
3.4 Search Paths for User Supplied Operators 21
3.5 Operator Mechanism, Details . 22

3.5.1 Operator Categories . 22
3.5.2 Operator Parameters . 23

3.6 Details and Examples . 23
3.6.1 EXAMPLE: LoadASCII.java 24
3.6.2 EXAMPLE: Ysquared.java 25
3.6.3 EXAMPLE: CenteredDifferences.java 25
3.6.4 EXAMPLE: IntegratedIntensityVsAngle.java 26
3.6.5 EXAMPLE: OperatorTemplate.java 27

3.7 Categories for Operators . 27
3.7.1 Generic Operators(GenericOperator) 28

1

3.7.2 DataSet Operators (DataSetOperator) 29
3.7.3 Not Categorized Operators, Misc 32

4 Live Data 33
4.1 UDP Data Format . 34
4.2 DAS Sender . 34
4.3 Live Data Server . 34
4.4 ISAW Client . 35

5 NeXus 36
5.1 Format . 36

6 ASCII File Formats 37
6.1 Table View . 37
6.2 GSAS Data File Format . 37

6.2.1 Standard Powder Data File 37
6.2.2 Instrument Parameter File . 39

6.3 spec Standard Data File Format . 40

2

Chapter 1

Basics

1.1 Conventions in this Manual

Since this manual refers to a variety of things, java code, things on the command line,
and gui elements, the fonts will be selected as listed in Table 1.1.

Table 1.1: Font conventions for this manual

Java code fixed width font
classes, methods, and variables sans-serif font
command line, filenames typewriter font

GUI elements italics

1.2 Downloading and Installing

The normal ISAW distribution available at ftp://zuul.pns.anl.gov/isaw/ contains the
source java files for all ISAW-related programs as well as the compiled class files. In
the normal installation for users, the software is run out of Java archive files (jar
files), and the Java source files are not seen. In order to modify programs in the
ISAW package, it is necessary to unpack the software into a directory to make the
source files available for modification. For developers at IPNS, the source files can be
checked out from a CVS repository in order to coordinate development among several
developers. The steps necessary to unpack ISAW in order to modify it are:

1. Download the Java Development Kit (JDK) version 1.3 or later from the Sun
web site, http://java.sun.com/j2se/1.3/.

2. Install the JDK according to the instructions for your computing platform.

3. Download the ISAW distribution (without JRE) for your platform from the
IPNS ftp server at ftp://zuul.pns.anl.gov/isaw/.

3

4. Unpack the ISAW tgz file (for UNIX/Linux) or the self-extracting zip file (for
Windows) to install ISAW.

5. Open a command/shell window in the directory where ISAW was installed.

6. Unjar the jar files using the following commands:

• jar -xvf sgt v2.jar

• jar -xvf jnexus.jar

• jar -xvf IPNS.jar

• jar -xvf Isaw.jar

Now you have unpacked ISAW and its associated libraries down to the actual java
and class files.

1.3 Running ISAW

Running ISAW is easy with everything packed up and in one directory that contains
the installation. If the source is not extracted from the jar files, just use the command
(on linux)

java -mx128000000 -cp Isaw.jar:sgt v2.jar:IPNS.jar:jnexus.jar

IsawGUI.Isaw

from within the directory containing the jar files. For windows replace the colon
(:) with a semicolon (;). The −mx128000000 allocates 128MB of initial memory
to program and −cp sets the classpath to be the necessary jar files. The 128MB
of memory is sufficient for many applications. However, the -mx command can be
used for different amounts of memory as well to handle large files or for use on a
computer with a small amount of memory. Finally the class executed is Isaw.class
within the IsawGUI package. Remember that for Java, a package must be named in
the file using the package command and the source code must be in a subdirectory
of the same name. If you have unpacked the distribution to modify the source the
command is

java -mx128000000 -cp ISAW HOME IsawGUI.Isaw

where ISAW HOME is the location of ISAW with the full path specified.
For either installation case the classpath can also be specified in a system file.

For linux this is done in a login script by setting the CLASSPATH variable. The
above examples assume that the java command is in the path. In both linux and
windows systems the path is set in one of the login scripts using the PATH variable.
If java will not be in the path then the fully qualified command must be specified (i.e.
/usr/java/jdk1.3.1/bin/java).

4

1.4 Compiling ISAW

Before developing new classes or packages it is best to try a simpler case for compiling.
The best is to go into the IsawGUI directory of the distribution and type

javac Isaw.java

then try running ISAW. If the recompilation was successful there should be no differ-
ences between ISAW before and after you recompiled it. The next task in complexity
is to edit some of the source code and recompile it. This can be done with any of the
source replacing, in the above example Isaw.java with the name of the file to be com-
piled. Java does not require that files which depend on a modified file be recompiled
which simplifies the task.

If none of the class files are compiled then the build process is a little more
complicated. Java assumes that all classes that a file depends on are either already
compiled or are listed in the current compile command. This means that you can use
one of two commands:

• javac ∗/∗.java ∗/ ∗ /∗.java ∗/ ∗ / ∗ /∗.java (linux only)

• jikes -depend IsawGUI/Isaw.java

From the directory containing IsawGUI. The second command uses the jikes com-
piler from IBM with the -depend option. This automatically compiles files that the
current file depends on, provided the source code for the class is available. Another
option is to use a make utility or go into each directory and compile all source code
by hand.

To create new classes, choose a package that best categorizes it and include the
class in that package. If the new class does not fit into any existing package then a
new one can be created simply by creating a new subdirectory in ISAW where files
are placed. If you add new features which would be useful to other people, you should
submit the modified software to IPNS for inclusion in the standard ISAW distribution
after testing.

1.5 Developing with CVS

Concurrent Versions System (CVS) is a way of allowing multiple developers to work
on the same project with less problems. Some developers work at IPNS or are given
access to the CVS archive directly. This section provides a quick introduction to
using CVS. For more information refer to the CVS manual at
http://www.cvshome.org/docs/manual/. CVS is very good at allowing developers to
contribute changes to different files and different sections of the same file and combin-
ing them in the source tree. It also allows steps backwards in the development if new
bugs come in during the updating process. The danger of CVS is for developers not
to communicate which will (in the end) really mess things up when two developers
submit bug fixes or added features..

5

Using CVS on the CVS server is straightforward. You should check out the ISAW
source development and obtain the external jar files for associated libraries (IPNS.jar,
jnexus.jar, and sgt v2.jar). There will also be files missing that you must obtain
from the standard installation for your platform such as scripts, the splashscreen
image and the nexus shared library. To checkout and unpack ISAW on linux (the
CVS server runs linux):

• mkdir ISAW

• cvs checkout ISAW

• cd ISAW

• jar -xvf IPNS.jar

• jar -xvf jnexus.jar

• jar -xvf sgt v2.jar

• compile isaw and the files it depends on

The non-java files mentioned above are not listed in this series of commands because
they are not needed to compile java. Once the ISAW package is checked out of the
archive these files can be added to the directory structure.

After doing this you should have a fully working version of ISAW that will coop-
erate with CVS and has all of the necessary components compiled. The java archive
files that are installed using the jar command are not part of the development and
should not be checked into the CVS system. At this point you can use a variety of cvs
GUI’s or cvs on the command line. Possible options are jCVS (http://www.jcvs.org/)
and tkcvs (http://www.twobarleycorns.net/tkcvs.html) which support networked cvs
servers. To do so at IPNS requires a kerberos account to access the cvs server. On
linux do not forget to set the environment variables CVSROOT, CVSEDITOR, and
CVS RSH for proper functioning. For work on the cvs server the CVS RSH variable
does not need to be set.

6

Chapter 2

Building DataSets

2.1 Introduction

A DataSet object, as used by ISAW, is a container object that contains zero or more
Data objects. Each Data object represents a tabulated function or histogram using a
collection of y-values and corresponding x-values. Both the containing DataSet and
each Data object that it contains also hold several types of auxiliary information.
Some of the auxiliary information is in the form of a fixed set of data fields in the
objects, some is in an extensible list of ”attributes” maintained by each object. Since
various operations can be performed on a DataSet and the DataSet includes an ex-
tensible list of operators that can operate on the DataSet. Finally, the DataSet keeps
a ”log” of the operations that have been applied to the DataSet.

There are five major steps that are typically followed when building a DataSet:

1. Construct the empty DataSet complete with appropriate operators.

2. Add ”attributes” to the DataSet.

3. Construct a Data block to add to the DataSet.

4. Add ”attributes” to the Data block.

5. Add the Data block to the DataSet.

These steps would usually be done in the order listed, with the last three being
repeated for each Data block that is added to the DataSet.

2.2 Steps to Create a DataSet

2.2.1 Construct the Empty DataSet

This is very easy for a time-of-flight DataSet. There is a DataSetFactory that can be
used to build the empty DataSet and add the needed operators to the DataSet. For
a time-of-flight DataSet this is used as shown below. The ”title” parameter that is

7

passed to the constructor of the DataSetFactory will specify what title will be used
for subsequent DataSets produced by the factory.

DataSetFactory ds_factory = new DataSetFactory(title);

DataSet ds = ds_factory.getTofDataSet(instrument_type);

The instrument type is an integer code for the type of instrument. This is used by the
DataSetFactory to determine which operators should be added. The values for the
integer codes are defined in the file:

DataSetTools/instruments/InstrumentType.java

and currently include:

InstrumentType.TOF_DIFFRACTOMETER

InstrumentType.TOF_SCD

InstrumentType.TOF_SAD

InstrumentType.TOF_DG_SPECTROMETER

InstrumentType.TOF_IDG_SPECTROMETER

InstrumentType.TOF_REFLECTROMETER

At this time DataSetFactory provides a larger set of operations for the types
TOF DIFFRACTOMETER and TOF DG SPECTROMETER. Support, by way of spe-
cial operators for the other instrument types is still being developed. In all cases, very
basic operations such as add, subtract, multiply and divide by DataSets and scalars
are included.

If you are constructing a ”generic” DataSet with axis labels and units other than
those for a time-of-flight instrument, you can use a different constructor for the
DataSetFactory such as:

DataSetFactory factory = new DataSetFactory(title,

"Angstroms",

"d-Spacing",

"Counts",

"Scattering Intensity");

DataSet ds = factory.getDataSet();

In this case, the factory will produce DataSets with the given title, axis units and la-
bels. getDataSet will only add the generic operators to the DataSet, not the operators
specific to time-of-flight DataSets.

2.2.2 Add Attributes to the DataSet

Attributes can be added to DataSets and Data blocks at any time. However, it
is probably best to add the attributes you’ll need in an organized manner at the
time that you are constructing the DataSet. Attributes are name, value pairs where
the value can be things like an integer, float, array of integers, character string,
etc. Attributes are classes that are derived from the abstract base class defined in

8

DataSetTools/dataset/Attribute.java. This file also contains a list of the names
that we have been using for the attributes. The names are given by ”constant” strings.
Since each attribute is stored in it’s own object, it is usually necessary to create the
attribute objects as they are added to the DataSet or Data block.

If a few individual attributes are being added to the DataSet (or Data block) they
can be added using the setAttribute(attribute) method. For example, assuming that
the original data file name is to be stored as an attribute of the DataSet, you could
write:

ds.setAttribute(new StringAttribute(Attribute.FILE NAME,file name));

to set an attribute for the file name in DataSet ds. This assumes that the variable
file name is a string containing the file name. This will construct a new StringAttribute
object with the name of the attribute given by the constant
Attribute.FILE NAME=”File” and the value of the attribute given by the file name
string. Other attributes are treated similarly.

ds.setAttribute(new IntAttribute(Attribute.NUMBER OF PULSES, num pulses));

The attribute can also be constructed separately and then set in the DataSet like:

int attr = new IntAttribute(Attribute.NUMBER OF PULSES, num pulses);
ds.setAttribute(int attr);

Finally, there are also routines to get and set the entire list of attributes at once, but
the routines to get and set individual attributes are actually more efficient to use in
most cases.

2.2.3 Construct a Data object

The three most crucial pieces of information held in each Data object are the list
of y-values, an XScale object specifying the corresponding x-values and a unique
integer ID. These three pieces of information are needed by the constructor for a
Data object. The y-values are just an array of type float[] and the ID is just an
integer value. However, the XScale is an object that either contains the x-values, or
contains enough information to calculate uniformly spaced x-values.

The x-values are stored in an XScale object for space efficiency. That is, in many
cases the x-values associated with a Data block are evenly spaced. In that case, they
can be easily calculated as needed based on the first point, the last point and the
number of points. Since we may have thousands of spectra with thousands of y-values
in each, it would be a serious waste of space to store corresponding evenly spaced
x-values in such cases. In this case, the x-values can be stored in a UniformXScale
object, derived from an XScale object. For example, a uniform XScale object with
101 points evenly spaced on the interval [0, 10] can be constructed as:

XScale x scale = new UniformXScale(0, 10, 101);

9

If the x-values are not evenly spaced, a VariableXScale object can be used to explicitly
store all of the x-values. Specifically, if an array of floats named ”x-vals” contained
the x-values we could create a VariableXScale object as follows:

XScale x_scale = new VariableXScale(x-vals);}

In either case, software using the x scale can get at information such as the minimum,
maximum, number of points and the actual x-values using the methods of the base
class XScale. For a time-of-flight Data object, the operators assume that the times
are specified in microseconds.

It also should be noted, that Data objects are used to store either histogram
data, or tabulated function data. These two cases are distinguished based on the
relationship between the number of x-values and the number of y-values. Specifically,
for a tabulated function Data object, the number of x-values will be the same as the
number of y-values. In this case, the y-values give the value of a function at the
corresponding x-value. On the other hand, for a histogram, the Data object records
the x-values at the boundaries of the histogram bins. The y-values are considered to
be the y-values at the bin centers. Thus for histogram data, the number of x-values is
one more than the number of y-values. The number x-values is restricted by the Data
object constructor to be either the number of y-values, or the number of y-values plus
one.

An example of building a simple Data block for the function y = (x/10)2 on the
interval [0,49], with ID = 1 is given below:

float y_values[] = new float[50];

XScale x_scale = new UniformXScale(0, 49, 50);

for (int i = 0; i < 50; i++){

y_values[i] = (i/10.0) * (i/10.0)

}

Data data = new Data(x_scale, y_values, 1);

2.2.4 Add attributes to Data object

Both DataSet objects and the Data objects that they contain implement the IAt-
tributeList interface. As a result, attributes are added to Data objects in exactly the
same way as they are added to DataSets. For example, if data is a Data object, we
could add an attribute specifying that the initial energy was 120.0 as follows:

data.setAttribute(new FloatAttribute(Attribute.ENERGY IN, 120.0f));

2.2.5 Add the Data object to the DataSet

Once a Data object has been constructed, and its attributes set, it should be added
to a DataSet. For example, to add a Data object data to a DataSet ds just do:

ds.addData_entry(data);

10

2.3 Attributes Needed in a DataSet and Data Ob-

ject

Although the above discussion describes how to construct a Data block and DataSet,
more information is needed to construct a DataSet to hold time-of-flight data in a
way that will allow useful operations to be done on the Data. In particular, most
of the ”interesting” operators for neutron scattering rely on specific attributes of the
DataSet and Data objects. The attributes that are currently used by various operators
include:

Object Attribute.DETECTOR_POS

Float Attribute.INITIAL_PATH

Float Attribute.ENERGY_IN

Int Attribute.NUMBER_OF_PULSES

Float Attribute.SOLID_ANGLE

Float Attribute.DELTA_2THETA

Float Attribute.RAW_ANGLE

To allow for comparing and scaling DataSets, some measure of the number of neutrons
that hit the sample is needed. For use in scripts, this should probably be the number
of pulses, at least that is what has been used for GPPD. If the number of pulses or
integrated beam current is not directly available, it could possibly be approximated
based on a start time and end time. At any rate, it would be useful to have the
number of pulses stored as a DataSet attribute for any instrument.

The attributes listed above are primarily used as attributes of each Data object.
The attributes are listed in decreasing order of importance. Interpreting the time-
of-flight data almost always requires the effective (focused) detector position. The
convention used in the DataSetTools package is that the effective detector position
gives the position of the detector relative to the center of the sample. Since there
are different ways of specifying this position, a class was constructed to hold the
position information and provide some extra information as needed. A Position3D
object contains a position, specified in any of the usual coordinate systems, Cartesian,
cylindrical or spherical. There are methods to get and set the position in any of these
coordinate systems, as well as some additional convenience routines.

The convention for the instruments at IPNS is that the coordinate system has
it’s origin at the sample position, the x-axis points in the direction the incident
beam is traveling, the y-axis is horizontal, perpendicular to the incident beam and
z-axis is perpendicular to the earth’s surface. This is also the convention followed
by the DataSetTools package. Unfortunately, that coordinate system is somewhat
inconvenient for describing the scattering angle (the angle between the positive x-axis
and the vector from the sample to the detector). Since the operators frequently need
to use the scattering angle a class DetectorPosition was derived from the Position3D
class. The DetectorPosition class adds a method to get the scattering angle, and so it

11

should be used to represent the position of the detector relative to the sample. An
example of code to set a detector position attribute corresponding to a detector that
is at an angle of 50 degrees, 0.1 meter above the xy plane, and above a horizontal
circle of radius 4.0 meters centered at the sample is shown below:

DetectorPosition position = new DetectorPosition();

float angle = 50.0f * (float)(Math.PI / 180.0);

float final_path = 4.0f;

float height = 0.1f;

position.setCylindricalCoords(final_path, angle, height);

data.setAttribute(

new DetPosAttribute(Attribute.DETECTOR_POS, position));

Lengths are assumed to be in meters, and angles are stored in radians. If the de-
tector position is easier to specify in Cartesian coordinates, (x, y, z), the method
position.setCartesianCoords(x, y, z) can be used instead.

The initial path attribute is needed for the diffractometer instruments. The initial
flight path is the source to sample distance in meters. If this can be obtained, as say
the float variable ”length”, it is easily added to the Data block as:

data.setAttribute(new FloatAttribute(Attribute.INITIAL PATH, length));

The operators to process data from direct geometry spectrometers require the initial
energy of the neutrons incident on the sample. The initial energy is assumed to
be in meV. It is often necessary to calibrate this value, but at least some initial
approximation will be needed by these operators. The more advanced operators
for direct geometry spectrometers will require the number of pulses to stored with
each Data block, in addition to being stored with the DataSet as a whole. Finally,
these operators need the solid angle subtended by the detector group, measured in
steradians.

The operator to produce a display of S(Q,E) for spectrometers will need an
approximate value for the interval of scattering angles covered by each detector. That
is, each detector has non-zero dimensions. Consequently, even though the detector
might be nominally at say 50 degrees, it actually covers some interval, say 49.95 to
50.05 degrees. Some approximation to the range of angles covered should be stored
in a DELTA 2THETA attribute. This value is assumed to be stored in degrees.

The operator to produce a ”TrueAngle” display of a DataSet requires the
DELTA 2THETA attribute, as well as the RAW ANGLE. The RAW ANGLE is the
actual physical scattering angle for the detector, without regard to time-focusing
(time focusing may adjust the raw angle to a different effective angle). A DETEC-
TOR POS attribute is assumed to hold the effective 3D position of the detector, while
a RAW ANGLE attribute is assumed to hold the physical, unfocused scattering angle.

2.4 A Data Retriever

In order to easily work with different sources of data, such as IPNS runfiles, Nexus
files, data acquisition hardware, etc. the system was designed to access data through

12

subclasses of the abstract class DataSetTools/retriever/Retriever.java. Cur-
rently the most rhobust derived class is RunfileRetriever that accesses IPNS runfiles.
New data sources should be supported by making a new class derived from the Re-
triever class (such as NexusRetriever), since in that way, all data sources can be used
in the same way. The Retriever class is quite simple:

The constructor accepts a string giving the name of the data source. For a data
file, this would most likely be the file name, and the file would most likely be opened
in the constructor.

The Retriever class then provides three methods, a method to get the number of
DataSets available from the source, a method to get the type of each available DataSet
(MONITOR DATA SET or HISTOGRAM DATA SET) and a method to get a specific
DataSet from the source. For the special case of the IPNS runfile retriever this gets
used as simply as:

RunfileRetriever rr = new RunfileRetriever("gppd9898.run");

DataSet A_monitor_ds = rr.getDataSet(0);

DataSet A_histogram_ds = rr.getDataSet(1);

where we’ve used the simplifying assumption that the ”zeroth” DataSet is always the
monitor DataSet and the ”first” always the first histogram DataSet. These simplifying
assumptions make it unnecessary to find out the number of DataSets and find out
their types before reading.

As other types of files or data sources are supported, the Retriever class may need
to expand slightly. However it is best to keep this class as simple as possible, since
any new functionality introduced in the Retriever will have to be supported by ALL
types of retrievers.

2.5 An Example

A simple program to demonstrate building a DataSet is in the file:

DataSetTools/trial/BuildDataSetDemo.java

in the latest version of DataSetTools. It can be compiled from within the directory
containing it using:

javac BuildDataSetDemo.java

and then can be run using

java BuildDataSetDemo

Assuming that all PATH and CLASSPATH values have been set properly. The code
for the demo is listed below:

13

/*

* @(#) BuildDataSetDemo.java 1.0 2000/9/19 Dennis Mikkelson

*

*/

import DataSetTools.dataset.*;

import DataSetTools.viewer.*;

import DataSetTools.math.*;

/**

* This class provides a basic demo of how to construct a

* DataSet.

*/

public class BuildDataSetDemo

{

/**

* This method builds a simple DataSet with a collection of 10

* sine waves.

*

* @return A sample DataSet with 10 sine waves.

*/

public DataSet BuildDataSet()

{

//

// 1. Use a "factory" to construct a DataSet with operators ---

//

DataSetFactory factory =

new DataSetFactory("Collection of Sine Waves",

"time",

"milli-seconds",

"signal level",

"volts");

DataSet new_ds = factory.getDataSet();

//

// 2. Add attributes, as needed to the DataSet ---------------

//

new_ds.setAttribute(new StringAttribute(Attribute.FILE_NAME,

"BuildDataSetDemo.java"));

new_ds.setAttribute(

new IntAttribute(Attribute.NUMBER_OF_PULSES,10000));

//

// Now, repeatedly construct and add Data blocks to the DataSet

//

14

Data data; // data block that will hold info

// on one signal

float[] y_values; // array to hold the y-values for

// that signal

XScale x_scale; // "time channels" for the signal

for (int id = 1; id < 10; id++) // for each id

{

//

// 3. Construct a Data object

//

x_scale = new UniformXScale(1, 5, 50); // build list of

// time channels

y_values = new float[50]; // build list of counts

for (int channel = 0; channel < 50; channel++)

y_values[channel] =

100*(float)Math.sin(id * channel / 10.0);

data = new Data(x_scale, y_values, id);

//

// 4. Add attributes as needed to the Data block

//

// "simple" energy in attribute

data.setAttribute(

new FloatAttribute(Attribute.ENERGY_IN, 120.0f));

// more complicated, position

// attribute has a position

// object as it’s value

DetectorPosition position = new DetectorPosition();

float angle = 50.0f * (float)(Math.PI / 180.0);

float final_path = 4.0f;

float height = 0.1f;

position.setCylindricalCoords(final_path, angle, height);

data.setAttribute(

new DetPosAttribute(Attribute.DETECTOR_POS,position));

//

// 5. Add the Data object to the DataSet

//

new_ds.addData_entry(data);

}

15

return new_ds;

}

/* -- */

/**

* The main program method for this object

*/

public static void main(String args[])

{

// create the class

BuildDataSetDemo demo_prog = new BuildDataSetDemo();

// call the method to construct a DataSet

DataSet test_ds = demo_prog.BuildDataSet();

// create a viewer for the DataSet

ViewManager view_manager = new ViewManager(test_ds,

IViewManager.IMAGE);

}

}

16

Chapter 3

Operators

3.1 Introduction

The Operator concept in ISAW provides a very powerful and flexible way to implement
special capabilities that are not in the basic ISAW system. A user-supplied operator
can be used from the ISAW GUI and from scripts, provided it has been compiled
and is in a directory where it can be found by ISAW and Java, so that it can be
executed. The main ISAW application does NOT have to be recompiled to use the
new operator. Also, the parameter values required by the operator can be obtained
from the ISAW pop up dialog box, so that the person writing the operator doesn’t
have to do any of the GUI coding themselves.

The ability of the operator to interact with ISAW scripts, dialog boxes etc. comes
at a small price. Specifically, an operator must include code to describe it’s parameters
to ISAW, to tell the scripting system what it’s command name is, and to make a copy
of itself. However, this code is very ”stylized” and can either be adapted from the
supplied operator template, or can be automatically generated by the operator builder
utility.

3.1.1 A Simple Example

A sample operator illustrates the basic structure of an operator, and how operators
interact with ISAW and the scripting system. The full operator code, with proper
documentation comments is in the file HelloOperator.java. The following lists all
of the necessary code with selected comments.

===

HelloOperator.java

===

package ISAW.Operators; // The "package" for this operator. To run,

// this operator must be in a directory

// named "ISAW/Operators" and the parent

// directory must be on the java CLASSPATH

import DataSetTools.operator.*;

17

import java.util.*;

public class HelloOperator extends GenericOperator

{

private static final String TITLE = "Hello Operator";

public HelloOperator() // Default constructor, used

{ // by the ISAW GUI. The user

super(TITLE); // will interactively specify

} // the parameters to use.

public HelloOperator(String user_name) // Constructor that specifies

{ // parameter values. This is

this(); // convenient when the operator

parameters = new Vector(); // is used from a java program.

addParameter(new Parameter("Name", user_name));

}

public String getCommand() // Tells script system what

{ // the command name is for

return "SayHello"; // this operator

}

public void setDefaultParameters() // Load or reload default

{ // parameters. This also

parameters = new Vector(); // sets the data types.

addParameter(new Parameter("Name", "John Doe"));

}

public Object getResult() // This is called to run the

{ // operator using its current

// parameter values.

String user_name = (String)(getParameter(0).getValue());

return new String ("Hello ") + user_name;

}

public Object clone() // Utility to allow copies

{ // of the operator to be

Operator op = new HelloOperator(); // created.

op.CopyParametersFrom(this);

return op;

}

// Main program for testing.

public static void main(String args[]) // This allows running the

{ // operator by itself to be

18

// sure that it is working.

System.out.println("Test of HelloOperator starting...");

// since we’re not running

// in ISAW here, get the user

// name from the system.

String name = System.getProperty("user.name");

// make and run the operator

Operator op = new HelloOperator(name);

Object obj = op.getResult();

// display the string returned

System.out.println("Operator returned: " + obj);

System.out.println("Test of HelloOperator done.");

}

}

3.2 Operator Structure

The HelloOperator demonstrates the basic operator structure. The basic role of each
of the methods of the HelloOperator is described in the following paragraphs. More
detailed information on the role and use of the parameters is given later in the section
on operator parameters.

First, there will typically be two constructors. The first constructor is the default
constructor with no parameters. This constructor will be used when the operator
is called from ISAW and meaningful parameter values will be provided by the user.
Default values are set for the parameters by the setDefaultParameters() method that
is called by the constructor for the Operator super class. The default constructor will
typically just call the super class’s constructor, specifying the title for this operator.
The second constructor takes values for the operator parameters, so that the operator
can be conveniently used by Java applications such as ISAW. This constructor is not
needed to use the operator from ISAW or with the scripting system, but makes
testing the operator more convenient. After calling the default constructor, this
constructor creates the list of parameters in the operator, using the values specified
in the arguments to the constructor.

In addition to the constructors, there are four required methods that all operators
must implement. The getCommand() method tells the scripting system what com-
mand to use to invoke the operator from a script. The setDefaultParameters() method
establishes a default list of parameters for the operator. The parameter names and
data types from this list are used by ISAW to construct an appropriate dialog box
if the operator is invoked from ISAW. The getResult() method is what is called to
actually carry out the operation. Finally, the clone() method of object is overridden
to allow ISAW and the scripting system to make copies of the operator if needed.

19

In Java, each object can have it’s own main program that can be used to test the
object. While it is not strictly necessary to have a main program for an operator, it
is extremely helpful to be able to at least test the basic functionality of the operator
before it is used in a larger system. The main program for the HelloOperator just prints
a message indicating that the operator is being tested, then creates an instance of the
HelloOperator, using the current user’s name, calls getResult() and prints the string
that was returned from getResult().

3.3 Running the Operator

Each operator can be used in any one of three ways. First if it has a main program,
the main program can be run to test the operator. It can also be used in scripts
and it can be automatically incorporated into the ISAW menu system when ISAW
is started. The steps needed to use the HelloOperator in each of these ways will be
described in detail.

In order to separately test operators, each operator can have a main program that
tests the basic functionality of the operator. Before it can be used from ISAW or
the scripting system, the operator must be compiled and be able to execute. That
means that the java interpreter must be able to find the operator’s class file, so the
CLASSPATH must be set properly. Since the HelloOperator was made part of the
ISAW.Operators package, the file HelloOperator.java must be in a directory called
ISAW/Operators. In order to run, the parent directory of ISAW/Operators must be
on the java CLASSPATH. If these conditions are met, you can compile the operator
using:

javac HelloOperator.java

from within the Operators directory. This creates the file HelloOperator.class. To
run the operator, you can just use

java ISAW.Operators.HelloOperator

from anywhere. The prefix ISAW.Operators is needed since the HelloOperator is in
the package ISAW.Operators.

To test this:

1. Create a directory in your home directory called ISAW.

2. Create the Operators subdirectory of this ISAW directory.

3. Copy the HelloOperator.java code into the new ISAW/Operators directory
in your home directory.

4. Add your home directory to the java CLASSPATH.

5. Compile and run the HelloOperator using javac and java as described above.

20

If it works properly, the operator should print a message saying that it is running,
then say hello to you and finish.

Once the operator has been compiled and run as a stand alone java program, it can
also be used from the ISAW GUI and from scripts, provided the script interpreter can
find the operator. If the HelloOperator is in the ISAW/Operators directory of the user’s
home directory, as described above, it will be found and “automatically” included in
the ISAW menu system.

To verify that the operator can be run from ISAW, start ISAW and go to the
Macros→Generic submenu. An entry Hello Operator should be listed in the menu.
Selecting the Hello Operator will pop up a dialog box to allow you to enter your name.
Press the Apply button to run the operator and display the result in the dialog box.

To verify that the operator can be used from a script, select the Scripts tabbed
pane in ISAW and enter the following one line script in the immediate entry:

Display SayHello(”your name”)

then run the script. The status window should display the result of running the
operator.

3.4 Search Paths for User Supplied Operators

The script interpreter will look for pre-compiled operators in several places. First,
it checks for compiled operators (.class files) in an ISAW/Operators directory in
the user’s home directory. Additional directories to look for operators in can be
specified in the properties file, IsawProps.dat, also located in the user’s home direc-
tory. Specifically, IsawProps.dat can specify the location of the ISAW installation
(ISAW HOME), and one or more directories that contain operators that may be shared
by several users (GROUP HOME, GROUP1 HOME, GROUP2 HOME, etc). Relevant
lines from IsawProps.dat might look like:

GROUP_HOME=/usr/share/IsawOps/

GROUP1_HOME=/usr/local/HRCS_OPS/

ISAW_HOME=/usr/local/IPNSjava/

If these lines are present in the IsawProps.dat file, the scripting system will look for
operator class files in four directories (and sub-directories of those directories), in the
order shown:

/home/user_name/ISAW/Operators (user’s home directory)

/usr/share/IsawOps/Operators

/usr/local/HRCS_OPS/Operators

/usr/local/IPNSjava/Operators (ISAW "home" directory)

In all cases the new operators being added to the system will be someplace in the
directory tree under a directory called Operators. Some care will be needed to avoid
package name conflicts. In the above example, there will be no name conflicts if the
CLASSPATH includes directories:

21

/home/user_name

/usr/share

/usr/local

/usr/local/IPNSjava

and the operators in those directories are in the following packages, respectively:

ISAW.Operators

IsawOps.Operators

HRCS_OPS.Operators

Operators

It is probably easiest to start adding your own operators to ISAW by putting your
home directory on the CLASSPATH, and developing operators in a package, ISAW,
located in the directory <home directory>/ISAW/Operators. When operators are
to be shared by several members of a working group, they can be placed in one of the
group directories, or in the ISAW HOME directory. If an operator is moved to such
a shared directory, the package name will have to be changed and the operator will
have to be recompiled.

3.5 Operator Mechanism, Details

3.5.1 Operator Categories

In order to provide some structure to the menu system, the user-supplied operators
can be placed in one of several categories. The categories currently supported are:

GenericOperator

GenericLoad

GenericSave

GenericSpecial

corresponding to the menu categories under the Macro menu bar entry. To create
an operator in a particular category, just derive the operator from that class. For
example, if we wanted to put the HelloOperator under the GenericSpecial category,
we would change the source code to read:

public class HelloOperator extends GenericSpecial

instead of

public class HelloOperator extends GenericOperator.

22

3.5.2 Operator Parameters

An operator is run when its getResult() method is called by the ISAW main program,
a script, or some other janva application. At that time the operator will be executed
using the current values of its parameters. In order for the ISAW dialog box to
generate appropriate data entry lines, and for the scripting system to check the data
types of the parameters, the operator must be able to provide prompts and data types
for its parameters. This is done using the class DataSetTools.operator.Parameter.

The Parameter class bundles together two pieces of information, the name for
the parameter and a Java object that holds the value for the parameter. The name
of the parameter provides the prompt string that appears for that parameter in the
dialog box. The class of the value object determines the data type of that parameter.
The data types currently supported by the scripting language and dialog box include
Float, Integer, Boolean, String, DataSet, int[] and StringLists. When writing
an operator, the names and default values must be provided for all of the parameters.
This information must be provided in the form of a Vector of parameters constructed
in the method setDefaultParameters().

The setDefaultParameters() method is called from the constructor for the base
class operator. If the operator is to be called from other java applications, it is also
convenient to make a separate constructor that allows values for the parameters to
be specified. In any case, when the getResult() method is called, the current values
of the parameters will be used.

When an operator is called from the main Isaw GUI, the dialog box will obtain the
current list of parameters from the operator, using methods implemented in the base
class operator, and will populate the dialog box with appropriate software components
to allow the user to enter values for the parameters. When the Apply button is pressed,
the parameter values entered by the user are set as the current parameter values for
the operator and the operator’s getResult() method is called to execute the operator.
If the operator is used from a script, the script interpreter will set the values of the
parameters in the operator from the values specified in the script before calling the
operator’s getResult() method.

3.6 Details and Examples

In order to write operators that work with DataSets, some knowledge of the structure
and attributes of DataSets is needed. It will probably be helpful to look over the
information on DataSets in Chapter 2 or the ISAW user manual before proceeding.
The java docs for the DataSet, Attribute and Parameter classes in the docs directory
of the ISAW distribution directory should also be helpful.

The basic concept is quite simple and will be quickly summarized here. A DataSet
consists of a list of Data blocks. Each Data block has a list of x-values and a list of
y-values, representing a tabulated function, or a histogram. For a tabulated function,
there are as many x-values as y-values, but for a histogram, there is one more x-value,
since the x-values represent the bin boundaries.

23

The DataSet and each Data block also contain meta-data. For example, the
DataSet contains a title, units and labels for the x- and y-values. The Data blocks
within a DataSet must represent the same physical quantities, since the units and
labels at the DataSet level are assumed to apply to all Data blocks. However, the
Data blocks do not have to be aligned in any particular way, and can cover different
intervals with different resolutions since each Data block has it’s own list of x-values.
Also, the sample points do not have to be uniformly spaced. Most other meta-data is
stored in extensible lists of attributes. Each Data block has it’s own list of attributes
and the DataSet as a whole has a list of attributes.

The following example operators illustrate some of the techniques involved in
operators that create and process DataSets. The examples and the ideas that they
illustrate are:

• LoadASCII - load a simple ASCII data file into a DataSet

• Ysquared - access and alter the values in a DataSet

• CenteredDifferences - create a new DataSet from an existing DataSet

• IntegratedIntensityVsAngle - access detector position attributes and use of mul-
tiple parameters

• OperatorTemplate - DataSet, int, float, boolean and String paramters. May be
modified to produce a useful operator.

3.6.1 EXAMPLE: LoadASCII.java

As a first example of a useful operator, consider the operator LoadASCII.java. This
operator loads one histogram from an ASCII file with a very simple format. The
source code, LoadASCII.java, and an example data file, LoadASCII.dat, should be
in the Operators subdirectory of the latest ISAW distribution.

The LoadASCII operator takes only one parameter, the fully qualified file name of
the ASCII data file that should be loaded. The ASCII file must contain six initial lines
giving the title, units and labels for the x and y axes, and the number of histogram
bins. The rest of the file has two columns of data. The first column has the x-values
for the bin boundaries and the second column has the histogram values. The column
of x-values must have one more entry than the column of histogram values. Except
for the getResult() method, the structure of LoadASCII.java is just like the structure
of HelloOperator.java. The getResult() method first gets the current value of the
file name parameter, then reads the data from the file into local variables and arrays.
It would be easy to modify this operator to load data that just consists of x,y pairs
rather than a histogram. It would only be necessary to create the array x[] to be of
the same size as the array y[] and remove the line that reads the last bin boundary.

The data is read from the file using a utility class TextFileReader in
DataSetTools/util. This class makes it simple to read a sequence of numeric, char
or String values from a text file. It also supports putting back the last item that was

24

read, whether it was a single character, or a numeric or string value, so it should be
convenient to use when reading more complicated ASCII data file formats. In this
case, only the read line() and read float() methods are needed. The file is opened by
the TextFileReader constructor. If an error is encountered while reading the file, an
exception is generated and the operator will return an error message.

If the data is successfully read, the getResult() method constructs an empty
DataSet using DataSetFactory, puts the data into a Data block and adds the Data
block to the DataSet. The DataSet is constructed using a DataSetFactory, rather than
just a DataSet constructor since the DataSetFactory adds certain basic operators to
the DataSet. Also, a String indicating that the data was loaded from the specified file
is added to the DataSet’s log.

The operator has its own main program that can be used to test it. The operator’s
main program just loads the data from the file LoadASCII.dat and then pops up a
viewer to display the data. It can be tested by running the operator from within
the directory containing the sample data file, LoadASCII.dat. Specifically, if the
current directory contains LoadASCII.dat, and LoadASCII.java has been compiled,
it should work to give the command: java Operators.LoadASCII

3.6.2 EXAMPLE: Ysquared.java

The Ysquared operator provides a very simple example of accessing and altering the
y-values stored in a DataSet. The operator takes only one parameter, a DataSet. The
getResult() method steps across each Data block in the DataSet. For each Data block,
a reference to the array of y-values of the Data block is obtained. Using that reference
to the array of y-values, the y-values are then altered by squaring each one.

The main test program for this operator first loads an IPNS runfile, clones it
and displays it. The DataSet must be cloned, since the Ysquared operator alters the
DataSet it is given. The main test program then constructs and applies a Ysquared
operator to the original DataSet and displays the result. In order to use this main
test program, it will be necessary to edit the String giving the run name so that it
points to an actual file that can be read. If the operator is used from within ISAW,
the DataSet can be any DataSet that has been loaded into ISAW.

3.6.3 EXAMPLE: CenteredDifferences.java

The CenteredDifferences operator creates a new DataSet containing approximate nu-
merical derivatives of a specified DataSet. The numerical derivatives are calculated
using the centered difference approximation: dY = (Yi+1− Yi−1)/(Xi+1−Xi−1). The
new DataSet has the same x units and label as the original DataSet, but has y units
and label indicating that it is the derivative of the original DataSet.

As was the case with the Ysquared operator, the main test program loads an IPNS
runfile and will have to be altered to point to a file on your system.

25

3.6.4 EXAMPLE: IntegratedIntensityVsAngle.java

The IntegratedIntensityVsAngle operator is somewhat more involved than the previous
examples. In this example, we calculate the total number of counts over an interval
[a, b] and record the integrated intensity as a function of the scattering angle 2θ.

Several additional techniques are illustrated by this example. First, the operator
has three parameters, a DataSet and two floats, a, b, giving the interval over which the
histogram is integrated. Since the floats are stored internally in java Float objects, a
little bit of effort is needed to get the values from the list of parameters. Unfortunately,
the simple numeric type float is very different from the class Float in Java and so it is
necessary to do some work to get at the numeric value that we want. The expression
on the right hand side of the equation:

float a = ((Float)(getParameter(1).getValue())).floatValue();

gets the first parameter from the operator, then gets the value object for that param-
eter. The value object in this case is a Float object, so the object is type cast to type
Float. Finally, we want the numeric float value from this Float object, so we use the
floatValue() method of class Float to get the value that we will calculate with.

After getting the parameters, the getResult() method checks that the DataSet and
interval are valid and returns an ErrorString if they are not valid. Next, a new DataSet
is obtained and the log and attributes from the original DataSet are copied to the
new DataSet. A new log entry indicating the new calculation is also added to the log.

Since the XScales for DataSet must be increasing sequences, the original DataSet
is sorted in increasing order based on the detector position attribute. The sort is
carried out using a DataSetSort operator.

The core calculation consists of processing each histogram of the DataSet to obtain
the total counts on the interval [a, b] and to obtain the scattering angle, 2θ, for that
detector. Since the user specified interval [a, b] may not be aligned with the bin
boundaries, the endpoints may split a histogram bin. These technicalities are taken
care of by the utility NumericalAnalysis.IntegrateHistogram(). The detector position is
assumed to be an attribute of the Data block, and the example code demonstrates
how to obtain it. A DetectorPosition object records a position in three dimensions and
has methods that return the coordinates of the position using Cartesian, cylindrical
or spherical coordinates. The origin is at the sample and the x axis is assumed to be
in the beam direction. The positive y axis is assumed to be pointed upward. In this
example, a convenience method of the DetectorPosition class, getScatteringAngle(), is
used to calculate the angle between the scattered beam and the positive x axis.

When the integrated intensity and scattering angle for each detector have been
calculated and stored in arrays, one more technicality must be dealt with. It is likely
that more than one detector will have the same scattering angle. The later part of
the getResult() method checks for such duplicates and replaces values corresponding
to several detectors at the same scattering angle with one value (the average) at
that scattering angle.

Finally, the area and angle arrays with duplicates removed are placed in a Data
block, in the new DataSet and the new DataSet is returned.

26

3.6.5 EXAMPLE: OperatorTemplate.java

The OperatorTemplate file includes examples of parameters of types DataSet, int,
float, boolean and String. The getResult() method returns a String indicating that
the operator was called and what the parameter values were. This ”template” may
provide useful starting point for building a new operator as follows:

1. Rename the OperatorTemplate.java file to the name of the new operator.

2. Edit the new file to change the class name, constructor names, title, command
name and clone method so that they are appropriate for the new operator. Also,
change the operator name in the main test program.

3. Compile the renamed template, and make sure that it still runs along and can
be accessed from ISAW and Scripts, as needed.

4. Adjust the list of parameters as required in both the constructor and in the
setDefaultParameters() method.

5. Add the code for the new operator to the getResult() method. Modify the main
test program to do some basic tests of the operator, if possible.

6. Rewrite the documentation to match the new operator.

This process may be simplified somewhat by using the OperatorBuilder utility. The
OperatorBuilder gets the required information and places it in a new java file, in the
proper format. It basically creates a custom OperatorTemplate, and is more convenient
and less error prone to use than modifying the OperatorTemplate by hand.

3.7 Categories for Operators

The operators can be split into the categories described in Table 3.1. Here the Generic
operators are NOT associated with any DataSet. They can be invoked from the
CommandPane. Some of these operators would NOT make sense to invoke from
ISAW and would be categorized as Batch. Those that do make sense to invoke from
ISAW could be placed in the ISAW menus. Currently there is only one such category...
various forms of loading DataSets that could be invoked from the ISAW File menu.

The DataSet operators are kept with the DataSet and would appear in the same
menu that they currently appear in. However, the categories introduce an additional
level to the menu hierachy.

The catgories are implemented using an inheritance heirarchy so the categories
could be determined via ”instanceof”. This is also better adapted to the heirarchy of
menus, than a ”flat” getCategory() method that only returns one category name. For
compatibility, getCategory() would still be supported.

Two of Dongfeng’s operators do not fit nicely into this scheme, SpectrometerPlot-
ter and DataSetPrint. The SpectrometerPlotter operator is really just a single Data
block plotter and has nothing to do with Spectrometers. It should be replaced by a

27

Table 3.1: Categories of operators and their associated java class.

CATEGORY JAVA CLASS
Operator Operator
• Generic GenericOperator
◦ Load GenericLoad
◦ Batch GenericBatch
◦ Calculator GenericCalculator
◦ TOF DG Spectrometer GenericTOF DG Spectrometer
◦ TOF SCD GenericTOF SCD
• DataSet Operator DataSetOperator
◦ Edit List DS EditList
◦ Math DS Math
· Scalar ScalarOp
· DataSet DataSetOp
· Analyze AnalyzeOp
◦ Attribute DS Attribute
◦ Conversion DS Conversion
· X Axis Conversion XAxisConversionOp
· Y Axis Conversion YAxisConversionOp
· XY Axis Conversion XYAxisConversionOp
◦ Special DS Special

Viewer, like Kevin’s. Similarly, the DataSetPrint operator should be replaced by the
TableViewer. In the meantime, they could appear, uncategorized, at the end of the
DataSet operator menu, or be put into a Miscellaneous category.

A detailed list of how the current and some future operators would fit into the
categories is given below. Operators that are not yet implemented are marked with
a question mark.

3.7.1 Generic Operators(GenericOperator)

Generic operators are NOT associated with any DataSet .

• Load (GenericLoad)

– SumRunfiles

– LoadMonitorDS

– LoadOneHistogramDS

– LoadOneRunfile

– MergeRunfiles (Not yet implemented)

• Batch (GenericBatch)

28

– EchoObject

– pause

• Calculator (GenericCalculator)

• Direct Geometry Spectrometer (GenericTOF DG Spectrometer)

• Single Crystal Diffractometer (GenericTOF SCD)

Table 3.2: String constants to use in menus are defined in class Operator:

public static final String OPERATOR = ”Operator”;
public static final String GENERIC = ”Generic”;
public static final String LOAD = ”Load”;
public static final String BATCH = ”Batch”;
public static final String DATA SET OPERATOR = ”DataSet Operator”;
public static final String EDIT LIST = ”Edit List”;
public static final String MATH = ”Math”;
public static final String SCALAR = ”Scalar”;
public static final String DATA SET OP = ”DataSet”;
public static final String ANALYZE = ”Analyze”;
public static final String ATTRIBUTE = ”Attribute”;
public static final String CONVERSION = ”Conversion”;
public static final String X AXIS CONVERSION = ”X Axis Conversion”;
public static final String Y AXIS CONVERSION = ”Y Axis Conversion”;
public static final String XY AXIS CONVERSION = ”XY Axes Conversion”;
public static final String SPECIAL = ”Special”;

3.7.2 DataSet Operators (DataSetOperator)

Associated with a DataSet, the first three catgeories, Edit List, Attribute and Math,
apply to ANY DataSet. The last categories, Conversion and Special will vary with
instrument type and what operations have already been done.

The EditList operators have to do with changing the dataset by merging, sorting,
etc. without instrument specific information.

• EditList (sort, delete, merge)(DS EditList)

– DataSetMerge

– DataSetSort

– DataSetMultiSort

– DeleteByAttribute

29

– DeleteCurrentlySelected

– ExtractByAttribute

– ExtractCurrentlySelected (?)

The Math operators perform scalar transformations on the datasets, mathematical
operations using more than one dataset, and returning results from analyzing the
dataset.

• Math (DS Math)

– Scalar (ScalarOp)

∗ DataSetScalarAdd

∗ DataSetScalarSubtract

∗ DataSetScalarMultiply

∗ DataSetScalarDivide

– DataSet (DataSetOp)

∗ SumByAttribute

∗ SumCurrentlySelected

∗ DataSetAdd

∗ DataSetSubtract

∗ DataSetMultiply

∗ DataSetDivide

∗ DataSetAdd 1 (?) (operations using ONE Data block of a)

∗ DataSetSubtract 1 (?) (DataSet with ALL Data blocks of a second)

∗ DataSetMultiply 1 (?) (DataSet. Not yet implemented.)

∗ DataSetDivide 1

– Analyze (integrate, curve fit) (AnalyzeOp)

∗ DataSetCrossSection

∗ IntegrateGroup

∗ CalculateMomentOfGroup

∗ ConvertHistogramToFunction

∗ ResampleDataSet

∗ x = T (x) (?) (transformations applied to x, y)

∗ y = T (y) (?) (values in Data blocks)

∗ x = T (x, y) (?) (Not yet implemented)

∗ y = T (x, y) (?)

∗ FFT (?)

∗ FitPeak(s) (?)

The Attribute operators are a collection of accesor/mutator type operations.

30

• Attribute (DS Attribute)

– GetDSAttribute

– GetDataAttribute

– GetField

– SetDSAttribute

– SetDSDataAttributes

– SetDataAttribute

– SetField

The Conversion operators are simlar to both the EditList and Math operators except
they are using instrument specific methods.

• Conversion

– X Axis Conversion (XAxisConversionOp)

∗ DiffractometerTofToD

∗ DiffractometerTofToEnergy

∗ DiffractometerTofToQ

∗ DiffractometerTofToWavelength

∗ SpectrometerTofToEnergy

∗ SpectrometerTofToEnergyLoss

∗ SpectrometerTofToQ

∗ SpectrometerTofToWavelength

∗ TofToChannel

– Y Axis Conversion (YAxisConversionOp)

∗ TrueAngle

– XY Axes Conversion (XYAxisConversionOp)

∗ SpectrometerTofToQE

The Special operators depend not only on the instrument but also that other
operations have already been performed.

• Special (DS Special)

– MonitorPeakArea

– EnergyFromMonitorDS

– DoubleDifferentialCrossection

– SpectrometerDetectorNormalizationFactor

– SpectrometerFrequencyDistributionFunction

– SpectrometerGeneralizedEnergyDistributionFunction

31

– SpectrometerImaginaryGeneralizedSusceptibility

– SpectrometerMacro

– SpectrometerScatteringFunction

– SpectrometerSymmetrizedScatteringFunction

– SpectrometerNormalizer (This is now obsolete)

– SpectrometerEvaluator

– TimeFocus (?) (Not yet implemented)

3.7.3 Not Categorized Operators, Misc

This is a list of operators that do not fit in anywhere else in the operator hierarchy.

• DataSetPrint (Replace with TableView ?)

• SpectrometerPlotter (Dongfeng’s ”operator” to plot one group, using the Aus-
trailian graphics package. This really should be done with a viewer.)

32

Chapter 4

Live Data

A feature of ISAW that needs special documentation is the live data server. This
allows someone (with a bit of setup overhead) to view data currently being measured.
This is useful for determining if it is worthwhile to continue a particular measurement
before too much beam time is used.

The process of viewing live data is split up between three distinct processes (which
may or may not be running on the same computer):

• DAS Sender resides on the DAS computer and sends data to the instrument
computer on a named port using MultiNet UDP. UDP is a connectionless pro-
tocol where packets are sent to a location with indifference as to the state of
the recipient (whether or not it is receiving the packets).

• Live Data Server resides on the the instrument computer and listens for both
TCP and UDP connections at different ports (6088 for TCP and 6080 for UDP
by default). The server will receive whatever UDP packets are sent to it and
send any TCP packets that are requested from it.

• ISAW Client resides on the end-user’s computer. This connects to the Live
Data Server and requests (using TCP) live data.

The client computer has no knowledge of the data’s origin and the sender does not
know if anything is receiving the data it is sending out. The details of UDP and TCP
protocals are beyond the scope of this manual, information about the protocols can
be found at http://www.faqs.org/rfcs/rfc768.html (UDP) and
http://www.faqs.org/rfcs/rfc793.html (TCP).

A test version of the sender and the actual server come with the standard distri-
bution of ISAW. Running the software happens in three steps.

1. The Server can be started from anywhere on the instrument computer by typing

• java NetComm.LiveDataServer −D full data path

2. Start the Sender from the data directory using

• java NetComm.DASOutputTest inst prefix run number

33

Table 4.1: The format of the packet from the UDP sender. Remember this is con-
verted from little to big endian to be interpreted by the live data server. The total
size of the packet is 16300 bytes or 4075 long data words.

HEADER
21+l bytes - normally 25 bytes

4 byte magic number sent as a pseudopassword
1 byte instrument name length variable but is always 4 at IPNS (l)
l byte instrument name can be changed using the instrument name length
4 byte run number
4 byte group ID which is the detector subgroup
4 byte first channel index in this packet (i0)
4 byte number of channels being sent in this packet (n)

SPECTRUM
0 to 4068 words

4 byte intensity[i0] intensity in first channel

4 byte
...

4 byte intensity[i0 + n] intensity in last channel

3. From anywhere start Isaw and edit IsawProps.dat to change Inst# Name to
be descriptive of where you are running the live data server from (this name
will appear in the menu) and Inst# Path to be where you are running the live
data from (with port number). This will allow access to the live data through
the drop-down data menu.

4.1 UDP Data Format

The form of each packet being sent from the UDP Sender is seen in Table 4.1. The
format of the data is read from the run file then the data itself is read from the
hardware. The limitation of the packet being only 16300 bytes is to allow for the
historical 16384 byte packet limit with some room for overhead.

4.2 DAS Sender

4.3 Live Data Server

As mentioned above, the Server is intended to reside on the instrument computer
with two threads running: one for UDP connections and one for TCP connections.
The program is really quite simple if the details are skipped. Upon calling
LiveDataServer.java the arguments are parsed, the server name is printed to screen,

34

the logfile is initialized, the data directories are confirmed, then the UDP and TCP
listen threads are initialized. Other than starting the threads (and what they do) the
program does very little. The data directory is specified so that the LiveDataServer
can access the empty runfile that is created when the run is started. Since data is sent
as spectrum without detector positions or time information the Server obtains that
information from the start run file header on the Data Server system. Currently the
data is then put into a DataSet before being serialized and sent across the network to
the client. The problem with this is that any changes in the DataSet Class, Attributes,
or Operators associated with the data break this mechanism.

4.4 ISAW Client

35

Chapter 5

NeXus

The NeXus reader and writer are extremely preliminary version. Currently they work
for “usual” IPNS data sets. There needs to be a lot of work done to get this to the
level of reading and processing general NeXus files.

There are two files (external to ISAW) which need to be obtained before working
with nexus files.

• NeXus library file

• jnexus.jar

The jnexus library provides an interface for java to read and write the NeXus files.
The NeXus library file provides the actual methods that are called by jnexus to read
and write the data.

5.1 Format

Each file can have multiple entries. An entry is data with information used to de-
scribed what was measured and how it was done. An entry consists of the elements
as described in Table 5.1. While the order of this information is not very necessary (it
is all obtained through library functions) the contents of the file is. It is important to
note that NeXus is a specification for how information will be formated if it is present
in the file. However, there is no guarantee that the information will be present.

Table 5.1: Format of a NeXus entry.

SAMPLE
INSTRUMENT

source
equipment
detector
DATA

36

Chapter 6

ASCII File Formats

6.1 Table View

The Table View in ISAW allows for the display (and exporting) of a tab delimited
table of information.

6.2 GSAS Data File Format

GSAS is a Reitveld refinement program which is used throughout the crystallography
community. As a first note, GSAS reads fixed record length files. This means that it
contains some headers followed by blocks of data related to the header, repeated as
much as desired. All lines must be 80 characters in length.

6.2.1 Standard Powder Data File

The standard powder data file specification is found in the gsas technical manual.
This will, in general, be slightly different than any powder data file that one will
actually run across. For example, the version of the powder data file that ISAW
writes out also contains the detector group positions (reference angle and total path
length) as well as the integrated monitor counts. Applications that can read gsas
files, in general, know that these extra entries exist (in certain places in the file) and
will skip over them. For this reason what is described below is the ISAW extension
of the powder data format.

It is easiest to start with an example file. The first eleven lines of our example
are:

NdDyCaBa1.5Sr.5Cu2.2Ti2.8O14-d,7.996gr,#2

MONITOR: 4507029.0

BANKS Ref Angle Total length

#BANK 1 -144.84573 15.5

#BANK 2 -90.00005 15.5

#BANK 3 -60.000042 15.5

37

#BANK 4 -14.624277 15.5

#BANK 5 29.780281 15.5

BANK 000001 005600 000560 CONST 002000.0000000 05.0000000 STD

010694 010740 010371 010488 010566 010505 010492 010372 010687 010311

010568 010641 010335 010422 010323 010342 010517 010243 010126 010158

The first line is the title for then file, followed by the integrated monitor count (not
used by gsas) then six comment lines (comment lines begin with ’#’). Then the
bank header followed by the counts in each channel. The MONITOR keyword is not
recognized by gsas but is used by PDFgetN. The bank information is included for
completeness by ISAW. Bank header information, in this case, is the bank number,
number of channels, number of records (lines), constant time binning keyword, t0 of
the first time channel, ∆t of the time channels, and STD determines that σI =

√
I.

The general form of a powder data file (without extensions) is Comment lines and

Title
Instrument parameter Filename
comment lines
BANK BankNum Nchan Nrec BinType Bcoef1 Bcoef2 Bcoef3 Bcoef4 Type
data
comment lines
BANK BankNum Nchan Nrec BinType Bcoef1 Bcoef2 Bcoef3 Bcoef4 Type
data
...

the instrument parameter file name can be omitted. Each line must be 80 characters
in length. However, for the title, only the first 66 characters are retained by gsas. If
the name of instrument parameter file (see below) is missing EXPEDT will ask for
it. Comment lines can appear just before any bank header. The bank information
(header and data) can be repeated as many times as necessary. The bank header has
the following keywords:

BankNum The number assigned to the detector group. If this is zero gsas assumes it
is a monitor spectrum.

Nchan The total number of intensities listed in this bank.

Nrec How many lines the data is presented in. The number of channels in a line are
specified by the Type. For example, STD specifies that Nrec=Nchan/10 (rounded
up).

BinType How the data is presented (what is the x-axis). Valid values of BinType
are COND, CONST, CONQ, EDS, LOG6, LPSD, RALF, SLOG, and TIME MAP. These are
discussed in Table 6.1, values not listed are not supported by ISAW.

Bcoef1-4 Coefficients used to elaborate on the binning chosen using BinType.

38

Table 6.1: Description of the different values of BinType.

BinType Bcoef1 Bcoef2 Bcoef3 Bcoef4
constant t-spacing CONST t0 ∆t N/A N/A
constant d-spacing COND d0 ∆d N/A N/A
constant Q-spacing CONQ Q0 ∆Q N/A N/A
constant ∆t/t SLOG t0 max t ∆t/t N/A
time map listed TIME MAP TM# N/A N/A N/A

Table 6.2: Description of the different values of Type. If Type is blank STD is assumed.
For STD, NC is the number of counters, if it is not specified it is assumed to be 1.

Type Nrec

STD Nchan/10 10[NC(2I), I(F6)] σI =
√
I

ESD Nchan/5 5[I(F8), σI(F8)]

Type Specification of the errors. Valid values are STD, ESD, and ALT. If the record is
left blank then STD is assumed. These are discussed in Section 6.2, ALT is not
supported by ISAW.

The TIME MAP keyword specifies that the binning was not in any of the other
formats. A new listing is made which contains all of the information to reconstruct
the binning. The header is of the form

TIME MAP TM# Nvals Nrec TIME MAP CLCKWDT

TM# is the number of the time map, Nvals is number of data items, Nrec is Nvals/10
(rounded up), and CLKWDT is the number of clock pulses per microsecond. Each
record contains ten data items. However, each time bin is specified using three num-
bers (all eight digit integers): starting channel number, t in pulses of width
CLCKWDT, and channel width in pulses.

6.2.2 Instrument Parameter File

1234567890123456789012345678901234567890123456789012345678901234567890

INS BANK 5 INS FPATH1 14.00 INS HTYPE PNTR INS NSPEC 5 INS 1 ICONS

7483.17 -2.16 -8.99 INS 1BNKPAR 1.5000 144.845 0.00 .00000 .3000 1 1

INS 1I HEAD V-rod/no shields RT CoolPower displex Col#3 INS 1I ITYP 2

3.0000 29.9950 33857 INS 1ICOFF1 0.297403E+01 0.154201E+09

0.130196E+03 0.598090E+04 INS 1ICOFF2 0.942353E-01 -0.282635E+04

0.253667E-01 0.000000E+00 INS 1ICOFF3 0.000000E+00 0.000000E+00

0.000000E+00 0.000000E+00 INS 1IECOF1 0.141198E+00 0.963943E+06

0.655670E+00 0.670946E+03 INS 1IECOF2 0.386717E-02 0.410999E+03

39

0.670279E-03 0.000000E+00 INS 1IECOF3 0.000000E+00 0.000000E+00

0.000000E+00 0.000000E+00 INS 1IECOR1 1.000-0.645-0.553 0.259

0.347-0.258 0.414 0.000 0.000 0.000 INS 1IECOR2 0.000 0.000 1.000

0.942-0.505-0.650 0.505-0.733 0.000 0.000 INS 1IECOR3 0.000 0.000

0.000 1.000-0.653-0.798 0.655-0.825 0.000 0.000 INS 1IECOR4 0.000

0.000 0.000 1.000 0.971-0.998 0.420 0.000 0.000 0.000 INS 1IECOR5

0.000 0.000 1.000-0.973 0.616 0.000 0.000 0.000 0.000 0.000 INS

1IECOR6 1.000-0.446 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

INS 1IECOR7 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.000 INS 1IECOR8 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 INS

1PRCF1 1 7 0.01000 INS 1PRCF11 0.000000E-01 0.218000E+00 0.385300E-01

8.998e-03 INS 1PRCF12 6.0630 0.160800E+02 3.8630

6.3 spec Standard Data File Format

40

